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ABSTRACT

The emergence of the magic number 2 in recent statistical literature is

explained by adopting the predictive point of view of statistics with entropy

as the basic criterion of the goodness of a fitted model. The historical

development of the concept of entropy is reviewed and its relation to

statistics is explained by examples. The importance of the entropy

maximization principle as the basis of the unification of conventional and

Bayesian statistics is discussed.
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SIGNIFICANCE AND EXPLANATION

& This work is concerned with the clarification of the importance of the

roles played by the predictive point of view and the concept of entropy in

statistics. It starts with the discussion of the appearance of a common

constant, the so called magic number 2, in various applications of statistics,

and shows that it is deeply related to the predictive use of statistics.

The historical development of the statistical concept of entropy by

L. Boltzmann is reviewed and the common confusion caused by the adoption of

the Shannon entropy is eliminated. The close relation between statistics and

* the Boltzmann entropy is illustrated by examples.

The objectivity of the log likelihood as the criterion of fit is

explained with the aid of the entropy. The generality of the magic number 2

is then demonstrated in its relation to an information criterion AIC which is

realized by combining the predictive point of view and the concept of entropy.

The discussion leads to the entropy maximization principle which

specifies the object of statistics as the maximization of the expected entropy

of a fitted predictive distribution. It is shown that this principle provides

a basis for the unification of conventional and Bayesian statistics.

* obviously the recognition of such possibility contributes significantly to the

enhancement of research activity in the general area of statistics.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC and not with the author of this report.



PREDICTION AND ENTROPY

Hirotugu Akaik.*

1. introduction and summary

In this paper we start with an observation that the emergence of a particular

constant, the magic number 2, in several statistical papers is inherently related with the

predictive use of statistics. The generality of the constant can only be appreciated when

we adopt the statistical concept of entropy, originally developed by a physicist

L. Boltzmann, as the criterion to measure the deviation of a distribution from another.

A historical review of Boltzmann's work on entropy is given to provide a basis for the

interpretation of the statistical entropy. The neg-entropy, or the negative of the -

entropy, is often equated to the amount of information. This review clarifies the

limitation of Shannon's definition of the entropy of a probability distribution. The

relation between the Boltzmann entropy and the asymptotic theory of statistics is discussed

briefly.(®

The concept of entropy provides a proof of the objectivity of the log likelihood as a

measure of the goodness of a statistical model. it is shown that this observation,

combined with the predictive point of view, provides a simple explanation of the generality

of the magic number 2. This is done through the explanation of the AIC statistic

introduced by the present author. The use of AIC is illustrated by its application to

multidimensional contingency table analysis.

The discussion of AIC naturally leads to the entropy maximization principle which

specifies the object of statistics as the maximization of the expected entropy of a true

distribution with respect to the fitted predictive distribution. The generality of this

principle is demonstrated through its application to Bayesian statistics. The necessity of

Address: The Institute of Statistical Mathematics, Tokyo, Japan.

Sponsored by the United States Army under Contract No. DA.AG29-8O-C-0041.



Bayesian modeling is discussed and its similarity to the construction of the statistical

model of thermodynamics by Boltzmann is pointed out. The principle provides a basis for

the unification of the Bayesian and conventional statistics. Referring to ioltzmann's

fundamental contribution to statistics, the paper concludes by emphasizing the importance

of the research on real problems for the development of statistics.
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2. Emergence of the magic number 2

Around the year of 1970 a curious emergence of a constant has been observed in a

series of papers. This is the emergence of what Stone (1977a) symbolically calls the magic

number 2.

The number appears in Mallow's Cp statistic for the selection of independent

variables in multiple regression which is by definition

1
Cp -2 RSSp n + 2p,

where RSSp denotes the residual sum of squares after regression on p independent

variables, n the sample size and s2 an estimate of the common variance a2 of the

error terms (Mallows, 1973). The final prediction error (FPS) introduced by Akaike (1969,

1970) for the determination of the order of an autoregression is an estimate of the mean

squared error of the one-step prediction when the fitted model is used for prediction. It

satisfies asymptotically the relation

n log FPE - n log Sp + 2p

where n denotes the length of the time series, S the maximum likelihood estimate of
p

the innovation variance obtained by fitting the pth order autoregression. Both Leonard and

Ord (1976) and Stone (1977a) noticed the emergence of the number as the asymptotic critical

level of F-tests when the number of observations is increased.

An explanation of this number 2 can easily be given for the case of the multiple

regression analysis. The effect of regression is usually evaluated by the value of RSS
p

A smaller RSSp may be obtained by increasing the number of independent variables p.

However, we know that after adding a certain number of independent variables further

addition of variables often merely increases the expected variability of the estimate.

When the increase of the expected variability is measured in terms of the mean squared

prediction error, it will be seen that the increase is exactly equal to the expected amount W

of decrease of the sample residual variance RSS/n. Thus to convert RSS into an

-3- p
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unbiased estimate of the mean squared error of prediction we must apply twice the

2
correction that is required to convert RSS into an unbiased estimate of nO

The appearance of the critical value 2 for the F-test discussed by Leonard and Ord

(1976) is more instructive. The F-test is considered as a preliminary test of significance

in the estimation of the one-way ANOVA model where K independent observations Yjk

(k - 1,2,...,K) are taken from each group j (j = 1,2,...,J). Under the assumption

that Yjk are distributed as normal with mean 0 and variance the F-statistic for

testing the hypothesis 08 - 6 = 8j is given by

1~ 22
-1 2 2

(J -1) S3

J(K - 1))

where S x = Z(yJ. - y..) 2 and q -jEk Yjk - yJ.)2 and where yj,. and y.. denote

the mean of the jth group and the grand mean, respectively. The final estimate of 8 is

defined by

SYj. if the hypothesis is rejected

y.. otherwise -

Consider the loss function L(e) - - 8 )2 For the simpler estimates defined

by = y and 0 =yj. it can easily be shown that the difference of the risks of

these estimates has one and the same sign as that of E(J(K - 1))- 1(F - 2). Thus when

the sample size K is sufficiently large the choice of the critical value 2 for the F-test

to select 8 is appropriate.

The characteristic that is common to these papers is that the authors considered some

predictive use of the models. An early example of the use of the concept of future

observation to clarify the structure of an inference procedure is Fisher (1935, p. 393).

The concept is explicitly adopted as the philosophical motivation in a work by Guttman

(1967). In the present paper, the point of view that considers the purpose of statistics

as the realization of appropriate predictions will generally be called the predictive point

of view.

-4-



in the above example of the ANOVA model, if the number of groups J is increased

indefinitely, the test Statistic F converges to 1 under the null hypothesis. Thus the

* critical value of the F-test for any fixed level of significance must also converge to 1

* instead of 2. As is observed by Leonard and Ord this dramatically demonstrates the

* difference between the conventional approach to model selection by testing with a fixed

level of significance and the predictive approach. Since there is no generally accepted

criterion for the selection of the level of significance the present result must be

considered as a warning against the conventional testing procedure. Thus the emergence of

the magic number 2 must be considered as a sign of the impending change of the paradigm of

statistics. However, to fully appreciate the generality of the number, we have first to

expand our view of the statistical estimation procedure.

li
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3. From point to distribution -

The risk functions considered in the preceding section were the mean squared errors of

the predictions. Such a choice of the criterion is conventional but quite arbitrary. The

weakness of the ad hoc definition becomes apparent when we try to extend the concept to

multivariate problems.

A typical example of multivariate analysis is factor analysis. At first sight it is

not at all clear how the analysis is related to prediction. in 1971, trying to extend the

concept of IPZ to solve the problem of determination of the number of factors, the

present author came to the recognition that in factor analysis our prediction was realized

through the specification of a distribution (Akaike, 1981). This observation quickly led

to the observation that almost all the important statistical procedures are concerned with

the realization of predictions through the specification of some distributions.

Stigler ( 1975) noticed the shift of the interest of statisticians from point to

distribution estimation towards the end of the 19th century. However, it seems that

Fisher's very effective use of the concept of parameter drew the attention of statisticians

back to the estimation of a point in a parameter space. We are now in a position to return

to distributions and here the basic problem is the introduction of a natural topology in

the space of distributions. The probabilistic interpretation of thermodynamic entropy

developed by Boltzmann provides a historically most successful example of a solution to

this problem.

-6-



4. Entropy and information -p

The statistical interpretation of the thermodynamic entropy, a measure of the

unavailable energy within a thermodynamic system, was developed in a series of papers by

L. Boltzmann in 1870's. His first contribution was the observation of the monotone

decreasing behavior in time of a quantity defined by -.

3 f fC~c,t)log[fCx't)]dx
0

where f(x,t) denotes the frequency distribution of the number of molecules with energy

between x and x + dx at time t (Boltzmann, 1872). Boltzmann showed that for a closed

system, under proper assumptions of the collision process of the molecules, the quantity E

can only decrease. When the distribation f is defined with the velocities and positions

of the molecules the above quantity takes the form

B - If f log f dxd,

where x and 9 denote the vectors of the position and velocity, respectively. Boltzmann

showed that for some gases this quantity, multiplied by a negative constant, was identical S

to the thermodynamic entropy.

The negative of the above quantity was adopted by C. E. Shannon as the definition of

the entropy of a probability distribution

H - - f p(x)log p(x)dx , U

where p(x) denotes the probability density with respect to the measure dx (Shannon and

Weaver, 1949).

Almost uncountably many papers and books have been written about the use of the

Shannon entropy, where the quantity H is simply referred to as a measure of information,

or uncertainty, or randomness. One departure from this definition of entropy is known as

the Kullback-Leibler information (Kullback an Leibler, 1951) which is defined by

I -qp) f qCx)log(px))dx

and relates the distribution q(x) to another distribution p(x). Kullback (1959, p. 6)

-7-
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called this quantity the mean information per observation from q(x) for discrimination in

favor of q(x) against p(x).

luch interest has been shown in the use of these quantities as measures of statistical

information. However, it seems that the potential of these quantities as statistical

concepts has not been fully evaluated. Apparently this is due to the neglect of

Boltzmann's original work on the probabilistic interpretation of thermodynamic entropy.

Karl Pearson (1929, p. 205) cites the words of D. F. Gregory "... we sacrifice many of the

advantages and more of the pleasure of studying any science by omitting all reference to

the history of its progress.* It seems that this has been precisely the case with theU

development of the statistical concept of entropy or information.

I RD
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5. Distribution and entropy

The work of Boltzmann (1872) produced a demonstration of the second law of

thermodynamics, the irreversible increase of entropy in an isolated closed system. In

answering the criticism that the proof of irreversibility is based on the assumption of a

reversible mechanical process Boltzmann (1877a) pointed out the necessity of probabilistic

interpretation of the result.

At that time Meyer, a physicist, produced a derivation of the Maxwell distribution of

the kinetic energy among gas molecules at equilibrium as the "most probable" distribution.

Pointing out the error of Meyer's proof Boltzmann (1877b) established the now well-known

identity

entropy = log probability of a statistical distribution.

His reasoning was based on the asymptotic equality

nI n nl ni
log nin n -nIn log -' , (1)

where ni denotes the frequency of the molecules at the ith energy level and

n - no + n + * + np. If we put pi " ni/n then the right hand side is equal to nH(p),

where

'iH(p) i 1 0 Pi log Pi

i-0

which is the Shannon entropy of the distribution p - (p0 ,p1 ,...,p).

Following the idea that the frequency distribution f of molecules at a thermal

equilibrium is the distribution which is the most probable under the assumption of a given

total energy, Boltzmann maximized

H(f)- - f f log fdx
0

-9-
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under the constraints

f fdx-N and f xf(x)dx L,
0 0

where x denotes the energy level, N the total number of molecules and L the total

energy. The maximization produces as the energy distribution f(x) - C exp(-hx) with a

proper positive constant h. Boltzmann discussed in great detail that this result could be

physically meaningful only for a proper definition of the energy level x, a point

commonly ignored by later users of the Shannon entropy. Incidentally we notice here an U

early derivation of the exponential family of distributions by the constrained maximization

of H(f), a technique of probability distribution generation later called by the name of

maximum entropy method (Jaynes, 1957).

The change of the Boltzmann's view of the energy distribution between 1872 and 1877 is

quite significant. in the 1872 paper the distribution f(x,t) represented a unique

entity. In the 1877b paper the distribution was considered as a random sample and its

probability of occurrence was the main subject.

Boltzmann (1878) further extended the discussion of this point. Since the probability

of getting a sample frequency distribution (w0 ,w1 ,...,w P ) from a probability distribution

(f0 ,fl,..°,fp) is given by

f w0 w1  wnl
0 fP w I..;-

" f0fl '* p " 0 1w11 ' p

0 1 p

Boltzmann obtained an asymptotic equality

11w0f 0+wf +**+wIf - - ww -w +const. (2)i 0f0 1w1I  Wpfp w0w0 lt1 WpWp

where n - w1 + w2 + **' + wp and I denotes the natural logarithm. He pointed out that

the former formula (1) is a special case of (2) where it is assumed that

f0 . fE I . * . fp . Ignoring the additive constant the present formula (2) can be

rearranged in the form

-10-



in - -n gitL±

i-0 i

where gi = wj/n. Thus to retain the interpretation that the entropy is the log

probability of a distribution we have to adopt, instead of H(p), the quantity -

B(g,;f) - - X gilog(fi)

as the definition of the entropy of the secondary distribution g with respect to the

primary distribution f. When the distributions g and f are defined with densities

f(x) and g(x) the entropy is defined by

B(guf) f - g(x)log(C )d •

When it is necessary to distinguish this quantity from the thermodynamic entropy or the

Shannon entropy we will call it the Boltzmann entropy. It is now obvious that B(gif)

provides a natural measure of deviation of g from f.

The equality of the above quantity to the thermodynamic entropy holds only when the

former is maximized under the assumption of a given mean energy for an appropriately chosen

"primary distribution" f and then multiplied by a proper constant. Thus it can be seen

that the Shannon entropy H(g) E - Z g log g obtains the physical meaning of the entropy

contemplated by Boltzmann only under very limited circumstances. Obviously M or B(g;f)

is the more fundamental concept. This point is reflected in the fact that in Shannon and

Weaver (1949) essential use is made not of H(f) but of its derived quantities taking the

form of B(g;f).

The Kullback-Leibler (KL) information number is defined by I(g;f) - -B(ggf).

Contrary to the formal definition of I(g;f) by Kullback (1959) the present derivation of

B(g;f) based on Boltzmann's X9 clearly explains the difference of the roles played by

g and f. The primary distribution f is hypothetical, while the secondary g is

factual. Boltzmenn (1878) also arrived at a generalization of the exponential family of

distributions by maximizing the entropy under certain constraints. These results

-11-



demonstrate the fundamental contribution of Boltzmann to the science of statistics. A good

summary of mathematical properties of the Boltzmann entropy or the Kullback-Leibler

information in given by Csiezar (1975).

12
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6. Entropy and the asymptotic theory of statistics

The Boltzman entropy appeared, sometimes implicitly, in many basic contributions to

statistics, particularly in the area of asymptotic theory. For a pair of distributions

p(,19 1 ) and p(,ol 2 ) from a parametric family (p(10)1 e e} the deviation of the

former from the latter can be measured by B(O1,2) - u(pI1 6
1 ); p(o1e 2 )). This induces a

natural topology in the space of parameters.

When 81 and 62 are k-dimensional parameters given by 01 - (0111 6 12'*00'6 1k) and

2 - (0 ,22,..4, 2), under appropriate regularity conditions we have

a2
S;02 ) - (- 102 - a1)'x p log p(xIle)(e - 01) + o(102 - 0 12)

-2 2 1 2 1

where (a2/aelae)log p(x16 1) denotes the Hessian evaluated at 8 = S1 and E the
21

expectation with respect to p(.1 I) and o(102 - 0112) a term of order lower than

Is 2 - 2 -1 (1 - 621)2 . Obviously -Z(a2 /a6'ea)log p(x1O1 ) is the Fisher
i

information matrix. The fact that the Fisher information matrix is just minus twice the

Hessian of the entropy clearly shows that it is related to the local property of the

topology induced by the entropy.

The likelihood ratio test statistic for testing a specific model, or hypothesis,

defined by 8 - 0  is given by

- I[P(x 100 )

n sup(Hp(xiIS), 6 e e}

where (Xl#X2 ... xn) denotes the sample. If the true distribution is defined by p(-10)

we expect that

Tn logA
n n

will stochastically converge to -B(8;8 ) as n is increased to infinity. The result of

Bahadur (1967) shows that under certain regularity conditions it holds that

lim log P(T n > 'tn 160) 90 Bl 0)

n n3n0

-13-
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where tn denotes the sample value of the test statistic Tn for a particular

realization (x1Ix2t... Xn). This means that if one calculates the probability of the

statistic Tn being larger than tn, assuming that the data has come from the

hypothetical distribution p(*10 0), it will asymptotically be equal to exp(nB(S,6
0 )),

where 8 denotes the true distribution.

In a practical application the hypothesis will never be exact and the above result

says that by calculating the P-value of the log likelihood ratio test we are actually

measuring the entropy nW(O 0 ). This observation eliminates the common misconception that

considers the test meaningless due to the certainty of 80'a being false.

The concept of second order efficiency was introduced by Rao (1961). In that paper he

discussed the performance of an estimator obtained by minimizing the Kullback-Leibler

information number Z Wr log(W r/pr ), where w denotes the probability of the rth cell in* r

a multinomial distribution, defined as a function of a parameter 8, and Pr the observed

relative frequency. This estimator can also be characterized as the one that maximizes

B(;p), while the maximum likelihood estimate maximizes B(p;w).

If we carefully follow the derivation of B(ggf) we can see that the primary

distribution f is always hypothetical, while the secondary distribution g is factual.

It is interesting to note that Rao has shown that the minimum KL number estimator, defined

by the entropy with a factual primary distribution and an hypothetical secondary, is less

efficient than the maximum likelihood estimator defined by the more natural definition of

the entropy. A similar relation has been observed between the estimators defined by

minimizing the chi-square and the modified chi-square that are approximations to -2B(p;w)

and -2Blip), respectively. These results suggest that the present interpretation of

entropy can produce useful insights not available from the Fisher information which does

not discriminate between the primary and secondary distributions.

The relation between the entropy and the asymptotic distribution of the corresponding

sample distribution function is discussed by Sanov (1957) and Stone (1974). Some standard

references on the relation between the entropy and large sample theory are Chernoff (1956)

and Rao (1962).

-14-* 6



7. Likelihood, entropy and the predictive point of view -
Obviously, one of the mlost significant contributions to statistics by R. A. Fisher is

the development of the method of maximum likelihood. However, there is a definite

limitation to the applicability of the idea of maximizing the likelihood.

The limitation can most clearly be seen by the following model selection problem. -

Consider a set of parametric families (PC.Ie k)) (k - 1,2,...,K) defined by

8k - ak1' k2".' kk' O k+I1..' OK ) intekhfamily, only the first k components of

the parameter vector 6 are allowed to vary but the rest are fixed at some preassigned

values e ekl** K When data x is given, if we simply maximize the likelihood among

the whole families, we always end up with the choice of pC.IS1) where 6 denotes the
K K

maximum likelihood estimate that maximizes P~xI K ). This means that the method of maximum

likelihood always leads to the selection of the most unrestricted parametric model. This

is obviously against our expectation. The counseling by a statistician of the choice of

the highest possible order whenever fitting a polynomial regression, by the method of

maximum likelihood, will certainly lose the trust of his clients.

Fisher was clearly aware of the limitation of his theory of estimation. Pointing out

the future possibility of inductive argument which will discuss methods of assigning the

functional form of the population by data Fisher (1936) states "At present it is only

important to make clear that no such theory has been established". This clearly suggests

the necessity of extending the theory of statistical estimation to the situation where

several possible parametric models are involved. Such an extension is possible with a

proper combination of the predictive point of view and the concept of entropy.

The predictive point of view demanded the generalization of the concept of estimation

from that of a parameter to that of the distribution of a future observation. We will call

such an estimate a predictive distribution. The basic criterion in this generalized theory

of estimation will then be the measure of the goodness of the predictive distribution. The

expected deviation of the true distribution from the predictive distribution as measured by

the expected entropy EB(true; predictive) will serve for this purpose. Here, the



eS

expectation Z is taken with respect to the true distribution of the data used to define
O

the predictive distribution.

In a practical application, except for the data obtained by an artificial sampling

scheme, no one knows what is the true distribution. Only through the process of specifying

an estimation procedure, or a model, the true distribution obtains a practical meaning.

The true distribution may thus be viewed as a conceptual construction that provides a basis

for the design of an estimation procedure for a particular type of data. The validity of

such a procedure can only be judged by the collective experience of its use by human

society. In such a circumstance it becomes important to find objectivity in a statistical -.

inference procedure.

For a parametric model (p(-O)i 0 e e1 we may consider a predictive distribution

defined by f(yjx) - p(yJI), where y denotes the future observation and x the present

data. The goodness of such a predictive distribution is evaluated by the entropy

B(*10) - -Eylog 
p (Y

where By denotes the expectation with respect to the true distribution denoted by p(y).

However, since we have

B(*iO) E E log p(yIO) - Zylog p(y)

for the comparative evaluation of 8 we may restrict our attention to E log p(yl1).
y

Here we further specify the predictive point of view by assuming that the future

observation y is another independent sample taken from the same distribution as that of 0

the present data x. This point of view specifies the objective of our inference. In

particular, it specifies that the accuracy of our inference is evaluated only in its

relation to the prediction of an observation similar to the present one. This suggests

that a too detailed modeling of a situation may not really be necessary for the purpose of

inference, thus suggesting the necessity of parsimonious modeling.

One of the important consequences of the present specification of the predictive point

of view is that it leads to the observation that the log likelihood log p(x18) is a

natural estimate of ylog p(yle). Obviously, by the present predictive point of view, t,.e

log likelihood log p(xJ8) provides an unbiased estimate of Ey log p(yt8 ), irrespectively

-16-
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of the form of the true distribution p(y). This provides a proof of the tact that the

log likelihood is an objective measure of the goodness of fit of the distribution p(10e).

Thus we see that a definite objectivity is being imparted to statistical inference through

the use of log likelihoods. in particular, we can ace that the range of the validity of

the concept of likelihood is not restricted to one particular parametric family of

distributions. This observation constitutes the basis for the solution of the model

selection problem considered at the beginning of this section.

-17-



a. Model selection and an information criterion (AIC) U

We will first show that our basic criterion, the expected entropy, provides a natural

extension of the mean squared error criterion. The quality of a predictive distribution

f(yjx) is evaluated by the expected negentropy defined y

-x B(flf(oIx)) - Eylog f(y) - E xEylog f(yjx)

where f(y) denotes the true distribution of y which is assumed to be independent of

* x and Ex and Ey denote the expectations with respect to the true distributions of x

and y, respectively. By Jensen's inequality we have E xlog f(ylx) ) log Exf(ylx) and we

get the additive decomposition

-ExB(f;f(lox)) - {ylog f(y) - Eylog Zxflyix))

+ {E log Ef(yx) - EEx log flylx)}
y x y x

U

The term inside the first brackets on the right hand side represents the amount of increase

of the expected negentropy due to the deviation of f(y) from Exf(ylx). This term

corresponds to the squared bias in the case of ordinary estimation of a parameter. The

term inside the second brackets represents the increase of the expected negentropy due to

the sampling fuctuation of f(yjx) around Bxf(ylx). This quantity corresponds to the

variance. The present result shows why the two different concepts, squared bias and

variance, can meaningfully be added.

Having observed that the expected negentropy provides a natural extension of the mean O

squared error criterion we recognize that the main problem is the estimation of the entropy

or the expected log likelihood E log f(ylx) of the predictive distribution. In the case
y

of the ANOVA model discussed by Leonard and Ord the F-test was used for the selection of

the model underlying the definition of the final estimate. For the present general model

we consider the use of the log likelihood ratio test. The test statistic for the testing

of (p(.IOk)} against {pl' eK)) is defined by

(-2)(log p(xlek) - log p(xleK)} •

and is tested as a chi-square with the degrees of freedom K - k.

-18-
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We consider that the test is developed to make a reasonable choice between p(y -

and p(yi k. From our present point of view this means that the test must be in good
k*

correspondence to the choice by (-2)3y(log p(yle:) - log p(y1O,)}. The result of Wald

(1943) on the asymptotic behavior of the log likelihood ratio test shows that, when x is

a vector of observations of independently identically distributed random variables with the -

likelihood functions satisfying certain regularity conditions, we have asymptotically

Z [-2{log p(xiSO) - log p(x1) J0- _ -112 + (K - k)

where Ex  denotes the mean of the limiting distribution, I I  the Euclidean norm defined

by the Fisher information matrix, and e0 denotes the value of 6 that maximizes
k k

Exlog p(Xlek), where Ex denotes the expectation with respect to the true distribution

p( xl 8).

Similarly from the analysis of the asymptotic behavior of the maximum likelihood

estimates we have asymptotically

Ex[-2Ey(log p(y - log OylO ))]- 0 - 0, 2 - (K - k)

where the restricted predictive point of view is adopted and x and y are assumed to be

independently identically distributed.

From these two results it can be seen that as a measurement of

(-2)E {log Ply - log p(ylO} the log likelihoodt ratio test statistic

(-2){log p(xle6 ) - log p(xle*)} shows an upward bias by the amount of 2(K - k). If we
k K

correct for this bias then we get (-2 log p(xlOk) + 2k) - (-2 log p~xlO* ) + 2K) as a
k K

measurement of the difference of the entropies of the models specified by p(o16 k} and
* *

p(°10 ). This observation leads to the conclusion that the statistic -2 log p(x18 ) + 2k
K k

should be used as a measure of the badness of the model specified by p(.Ie) (hkaike,kg

1973). The pseudonym AIC adopted by Akaike (1974) for this statistic is the abbreviation

of "an information criterion" and is symbolically defined by

AIC = -2 log(maximum likelihood)

+2 (number of parameters) ,

where log denotes natural logarithm.
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If the log likelihood ratio test is considered as a measurement of the entropy

difference then the above observation suggests that from our present point of view we

should choose the model with smaller value of AIC. If we follow this idea we get an

estimation procedure which simultaneously realizes the model selection and parameter

estimation. An estimate thus obtained is called a minimum AIC estimate (MAICE). Now it is -.

a simple matter to see that the critical level 2 of the F test by Leonard and Ord

corresponds to the factor 2 of the second term in the definition of AIC.

One important observation about AIC is that it is defined without specific reference

to the true model p(-10). Thus, for any finite number of parametric models, we may

always consider an extended model that will play the role of p(10 K). This suggests that

AIC can be useful, at least in principle, for the comparison of models which are non-

nested, i.e., the situation where conventional log likelihood ratio test is not applicable.

We will demonstrate the practical utility of AIC by its application to the

multidimensional contingency table analysis discussed by Goodman (1971). Observing the

frequency fijkl in the cell (i,j,k,l) of a 4-way contingency table (i - 1,2,...,I;

j 1,2,...,J; k - 1,2,...,K, I = 1,2,...,L) with Eijkfijkf - n the basic model is

specified by the parametrization

AB CD ABC BCD ABCDlog Fi e + A + ... + A + A +**+ +A + .. +A +Aijkt i A ij A ijk +ko ijkt

where F denotes the expected frequency and the 'e satisfy the condition that any

sum with respect to one of the suffices is equal to zero. The characters A, B, C, D

symbolically denotes the group of parameters that are related with the factors denoted by

these characters. Hypotheses are defined by putting some of the parameters equal to zero.

Goodman discussed the application to the analysis of detergent user data which

included information on the following four factors: the softness of the water used (S:,

the previous use of a brand (U), the temperature of the water used (T) and the preference

of a brand over the other (P). In the following Table 1 the initial portion of Goodman's

Table 3 is shown with the corresponding AIC's. In the Goodman's modeling when a higher

order effect is considered all the corresponding lower order effects are included in the

model.

-20-
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Table 1 Goodman's analysis of consumer data

Zatimated Group Degrees of (-2)Log
Hypothesis of Parameters Freedom Likelihood Ratio AIC

1 None 23 118.63 72.63 -.

2 8, P, T, U 18 42.93 6.93

3 All the pairs 9 9.85 - 8.15

4 All the triplets 2 0.74 - 3.26

5 PU, 8, T 17 22.35 -11.65

6 PU, 8 16 95.56 59.56

7 PU, T 19 22.85 -15.15

8 PU, PT 18 18.49 -17.51

9 PT, U 19 39.07 1.07

10 PU, PT, ST 14 11.89 -16.11

11 PVi PT, 8 16 17.99 -14.01

S

AIC - (-2)(Log Likelihood Ratio) - 2(Degrees of Freedom)

- AIC(i) - AZC(), where AIC(i) denotes the original AIC of Hi

and AC() denotes that of the saturated model with all the

parameters unrestricted. S

*. Goodman asserts that H, and H2 do not fit the data but H3 and H4 do, where

Hi denotes hypothesis numbered by i. By the present definition of AIC the negative signs

of AIC for H3 and H4 means that the corresponding models are preferred to the saturated

non-restricted model. This corresponds to Goodman's assertion. The AIC already suggests

that H4  is an over-fit and Goodman actually proceeds to the detailed analysis of H3 and

arrives at H5.

The significances of 8 and T are then respectively checked by comparing 6 and

H7 with H5. The hypothesis H8  is then judged to be an improvement over H7. The
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effect of PU is then confirmed by comparing He with H9 . Further elaboration of H8

leads to HIO* However, its improvement over H8  is not considered to be significant,

although the effect ST is judged to be significant by the comparison of H1 0 with

H11. The path of Goodman's stepwise search is schematically represented by Table 2.

S

Table 2. The path of Goodman's stepwise search and the corresponding AIC's*

72.6 6.9 -8.2 -3.3 0

H1  (9 H3 H4  H.

none singles pairs triplets saturated

59.6 -11.7 A
H6  ..

PU, S PU, S, T

-15.2 -17.5 -16.1

PU, T PU, PT PU, PT, ST

1.1 -14.0

H9 H11

PT, U PU, PT, S

The number above each hypothesis denotes the AIC relative to that of H.

Table 2 shows that we come to one and the same conclusions as those obtained by

Goodman with the choice of 5% as the critical level, simply by choosing models with lower
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9. Entropy maximization principle and the Bayes procedure -.

The discussion of the concept of true model an its relation to entropy clearly shows

that there is no end in statistical model building. All we can do is to produce better

models. When we admit this then it is easy to accept the following very modest, yet very

productive, view of statistics; all statistical activities are directed to maximize the S

expected entropy of the predictive distribution in each particular application. We call

this the entropy maximization principle (Akaike, 1977). The minimum AIC procedure may be

considered as a realization of this principle. The generality of this principle can be
-U

seen by the following discussion of Bayesian modeling.

Consider the set of models given by {gk (*) k - 1,2,...,K}, where gk(y) denotes a

predictive distribution specified by the parameter k. Assume that we consider the use of

a random mechanism for the selection of the predictive distribution. Our preference of the

models is represented by the distribution of probabilities wk(x) of selecting the kth

model, where wk(x) is specified by combining our knowledge of the problem and the data

x. However, irrespectively of the form of the true distribution of y, the following

relation holds

K KE y og09 k Ig(Y)wkCx)} I I Wx)E y log gkCy),
k-,, k"-i

where Ey denotes the expectation with respect to the true distribution of y. This means

that the entropy of the true distribution with respect to the averaged distribution

E gk(Y)wk(x) is always greater than or equal to that with respect to the distribution

chosen by the random mechanism. The entropy maximization principle suggests that we should

consider the use of the averaged distribution Z gk(Y)wk(x) as our predictive distribution

rather than the distribution to be chosen by the random mechanism. Taking into account the

fact that conventional model selection procedure is realized by a particular choice of

wk(x) which takes either the value 0 or 1, the present result suggests the possibility S

of improved modeling by extending the basic set of models from

g k(°)1 - 1,2,...,K) to {Ekgk(.)W ; wk 0, Ekwk - I
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values of AIC. The fact that AIC does not require the table look-up of the chi-squares

with different degrees of freedom adds to the significance of this result. Since AIC is

defined with a unique scaling unit it allows easy extraction of useful information from a

collection of fitted models. For example, by comparing the difference of AIC's of H7

and H5 with that of H8  and H,,, we can clearly see the deteriorating effect of

including S into the model. Also the direct comparison of H6 and H7, not possible by

the log likelihood ratio test, is now possible by AIC and the inferiority of H 6 that

contains S is clearly recognizable. The ability of AIC to allow the researcher to

extract global information from the result of fitting a large number of models is a unique

characteristic that is not shared by the conventional model selection procedure realized by

some ad hoc application of significance tests.

* AIC attracted much attention from people in both theoretical and applied fields of

statistics. In particular the 1974 paper (Akaike, 1974) has been spotted by the Institute

for Scientific Information as one of the most frequently cited papers in the area of

engineering, technology and applied sciences, with the frequency of citations over 180

during 1974-81 (Akaike, 1981). Some of the theoretical works related with AIC are the •

discussion of the asymptotic equivalence of the minimum AIC procedure to cross-validation

by M. Stone (1977b), modifications of the criterion by Schwarz (1978) anA Hannan a Quinn

(1979), discussions of the relation to the Bayes procedure by Zelln9A j1978), Atkinson

(1980) and Smith and Spiegelhalter (1980) and discussions of the optimality of the MAICE

type procedure by Akaike (1978a), Shibata (1980) and C. J. Stone (1982). The inherent

relation between the magic number 2 and the predictive point of view can be seen also by

the works by Geisser and Eddy (1979) and Leonard (1977).

When the number of possible alternatives is increased the MAICE procedure may tend to

be sensitive to sampling fluctuations. One solution to this problem is to use some

averaging procedure as is discussed in Akaike (1979). However, this brings us closer to

Bayesian modeling which is going to be discussed in the next section. 1
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The problem now is how to define wk(x). Since the distribution wk(x), which we

will cell the inferential distribution, is introduced to define a predictive distribution,

we will consider the more general problem of the selection of a predictive distribution.

Assume that the variable x takes a finite number of discrete values x = 1,2,...,!.

Before the observation of x we consider the selection of the predictive distribution of

x. We assume that the possible predictive distributions of x are also parametrized as

fk(x). Since x is not available yet we consider the use of a probability distribution

wk over k, defined independently of x. Thus we are specifying a probability

distribution Wkfk(X) over (k,x).

When the observation produces x - x. a Bayesian will say that we should follow the

Bayes procedure and replace the distribution wkfk(x) by the distribution w(k,x) which

is defined by

w(kx) I kfk(xO) for x - x0
k

0 otherwise .

However, this suggestion is not based on any clearly defined principle. One could have

chosen any w(kx) as a function of x0 , if only the distribution is limited to x - x0 .

There is an essential analogy between the Boltzmann's derivation of the exponential

family of distributions for energy and the Bayes procedure. To see this we consider more

generally an arbitrary distribution I(kx) over (kx) and try to find a distribution

w(k,x) concentrated on ((kx )) and such that the Boltzman entropy with respect to the
0

original w(kx) is maximum. This leads to the maximization of

[ I w(k,x){log w(kx) - log w(k,x)) + A(I w(k,x 0) -1
xk k

where A is the lAgrange multiplier. The solution is given by
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W(kx
w(k,x) - for x - x0 ,

1* w(k,x 0
k

0 otherwise

This result characterizes the transitiun from the original distribution to the

conditional distribution as the most conservative action that conforms to the observation

of the data x0 yet otherwise maximally retains the structure of the originally assumed

distribution. We will call this particular application of the maximum entropy method of

probability distribution generation by the name of conditioning principle.

Coming back to Dayesian modeling we can now see that the assumption of the original

distribution w(kx) and the conditioning principle leads to the use of the "posterior

distribution" w(kx) as the inferential distribution wk(x). That such a definition of

the inferential distribution is a reasonable one can be shown as follows. First we assume

that when k is given y and x are independent and the distribution is given by

gk(Y)fk(x). The expected performance of a predictive distribution h(ylx) is then

evaluated by Zk~xlk~ylk log h(yx), where Rk  denotes the expectation with respect to

the distribution wk  and Zxjk  and Sylk denote the expectations with respect to

fk(x) and gk(y), respectively. We have

ZkxlkSylk log h(ylx) - f f(x) gk(y)w(klx)log h(ylx)
x y k

where f(x) - E fk(x)wk and w(klx) - fk(x)wk/f(x). This quantity is maximized by putting

h(ylx) - gk(y)w(klx)
k

which means that, as long as we assume the validity of the original nrobabilistic set-up,

the use of the posterior distribution w(klx) as the inferential distribution is the best

choice. This result is recognized earlier by Kerridge (1961) and Aitchison (1975).
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10. Statistical inference and Bayesian modeling

What the result of the preceding section has shown is that the conditioning principle

leads to the best choice of the inferential distribution under the assumption of the

validity of the Bayesian model defined by fk(Y)fk(x)wk. What would happen when we are

uncertain about the choice of the *prior distribution" wk?

Here we recall our basic observation that statistical model building is an unending

process. This means that the validity of a model can only be established by a careful

analysis of other possibilities. This leads to the situation where we have several

alternative prior distributions w U1 Ci - 1,,...,I)o Here we have to assume a (hyper)

prior distribution T(i) over. ias. When the data x is observed the posterior

probability p(ilx) of the ith model is given by the relation

pilx) - f(i)(x)W(i) ,

where f(i)(x) is the likelihood of the ith Bayesian model defined by

f(i)(x) . CX)Wi)
k

Thus, even when we do not know how to specify w(i), we can see how much relative support W

was given to each model by the observation x. Good (1965) called the procedure of

hyperparameter estimation by maximizing the likelihood of a Bayesian model the type 11

maximum likelihood procedure. The use of the likelihood for the assessment of a Bayesian

model is demonstrted in an illuminating paper by Box (1980). The application to the very

practical problem of seasonal adjustment is discussead by the present author (kaike,

1980a).

The discussion of Bayesian modeling will never be complete unless we provide a

procedure for the modeling of the situation where no further prior information is available

for the modeling. The concept of entropy again finds an interesting application in this

type of situation. It has been shown tht the well-known Jeffreys' ignorance prior

distribution (Jeffreys, 1946) can be given an interpretation as the locally or globally

impartial prior distribution (Akaike, 1978b).
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However, this concept is essentially dependent on the continuity of the parameter

involved. Recently the present author applied the predictive point of view and the concept

of entropy to define a prior distribution that "lets the data speak most". For the

Bayesian model discussed in the preceding section this prior distribution, called the

minimum information prior distribution, is defined as the one that maximizes

I(W) = I h(y,x)log h(y,x)
g(y)f(x)yx

where g(y) - E gk(y)wk, f(x) = E fk(x)wk and h(y,x) = E gk(Y)fk(y)w k . The strict

predictive point of view demands us to put gk(y) - fk(y). It has been observed that this

definition leads to interesting non-trivial specifications of the prior distribution over a

finite discrete set of alternatives (Akaike, 1982).

Related works in this area are those by Zellner (1977) and Bernardo (1979) based on
-S

the earlier work of Lindley (1956) who discussed the use of the Shannon entropy in

statistics.

Do these formal procedures of generating prior distributions produce useful results?

The anwer can be obtained only through the detailed analysis of the final output of each

Bayesian model thus obtained. An example of such an analysis is given by Akaike (1980b)

where admissibility is proved for the James-Stein type estimator of a multivariate normal

distribution obtained by applying the ignorance prior to the byperparameter of a prior

distribution. S

Here again we are reminded of the attitude of Boltzmann who considered the

justification of the primary distribution used in the derivation of the distribution of the

energy could only be obtained through the observation of the validity of the final result.

The use of a Bayesian procedure can only be justified when the procedure produces good

results for those data which are "similar" to the present one and for which unequivocal

judgment of the results is possible.
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11. Conclusion

It is now clear that the predictive point of view, particularly in its strict form,

and the concept of entropy can produce a unifying view of statistics. This view is not

only conceptually simple and unifying but also practically very productive. The notorious

difficulty of the significance test of multiple hypotheses is given a practical solution by ".

AIC. The historical split between the Bayesian and non-Bayesian is now eliminated.

The entropy maximization principle which is obtained by combining the predictive point

of view with the concept of entropy clearly states that the search for better models is the

purpose of statistical data analysis. Bayesian modeling will often be useful in improving

the presently existing non-Bayesian models. However, models are formulations of our past

experiences and only new interesting real problems can stimulate the development of useful

models. The fundamental contribution by Boltsmann came from the deep study of one

particular real problem. Thus we can see that for the development of statistics the main

emphasis should be placed on the search for important practical problems. This forms the

conclusion of the present paper.

S
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